Herança - History, Heritage and Culture Journal

2025, 8(1), 20-48 ISSN: 2184-3090

https://revistaheranca.com

Research Article

In Search of the Lost Sun: The Viking Sun Stone and Its Legacy in Ancient Navigation

Gastón Sanglier Contreras ¹, Carlos Miguel Iglesias Sanz ², Roberto Alonso González Lezcano ³, Eduardo José Lopez Fernández ⁴

- ¹ Professor., Escuela Politécnica Superior, Department of Architecture and Design, Montepríncipe Campus, Universidad San Pablo-CEU, Madrid, Spain
- ² Professor, Escuela Politécnica Superior, Department of Architecture and Design, Montepríncipe Campus, Universidad San Pablo-CEU, Madrid, Spain
- ³ Professor., Escuela Politécnica Superior, Department of Architecture and Design, Montepríncipe Campus, Universidad San Pablo-CEU, Madrid, Spain
- ⁴ Dr., Escuela Politécnica Superior, Department of Architecture and Design, Montepríncipe Campus, Universidad San Pablo-CEU, Madrid, Spain
- * Corresponding Author: sanglier.eps@ceu.es

Citation: Sanglier Contreras, G., Iglesias Sanz, C. M., González Lezcano, R. A. & Lopez Fernández, E. J. (2025). In search of the lost sun: The Viking Sun Stone and its legacy in ancient navigation. *Herança*, 8(1), 20-48. https://doi.org/10.52152/heranca.v8i1/1018

ARTICLE INFO

ABSTRACT

Received: 26 Jun 2024 Accepted: 09 Sept 2024 Deciphering ancient navigation methods has long intrigued scientists and historians. This study explores the use of a Sunstone, an ancient Viking tool, alongside a compass to determine solar positions under various weather conditions, particularly fog. The objective was to understand how different atmospheric conditions impact solar position detection and its implications for modern applications.

The study was conducted at the San Juan Reservoir, located in the municipality of San Martín de Valdeiglesias in the Community of Madrid, Spain. Calcite was used as the solar stone due to its ability to polarize light. Two different routes around the reservoir were undertaken under sunny and cloudy weather conditions. A single route was conducted under light, moderate, and dense fog conditions, followed by rigorous statistical analysis.

Under clear skies, Sunstone readings correlated positively with solar intensity, while compass readings remained consistent. However, the study's key findings emerged under foggy conditions. Despite a decrease in observed solar intensity as fog density increased, the Sunstone demonstrated a resilient capability to discern solar positions consistently. Statistical analyses revealed a moderate positive correlation between observed intensity and solar position in light fog, which diminished with denser fog.

These findings have significant implications for navigation and solar energy planning, emphasizing the need to consider atmospheric conditions when using ancient navigation tools in modern contexts. This research highlights the challenges and potential of applying these ancient methods today, forming a foundation for further studies and practical applications.

Keywords: Sunstone; Compass; Fog; Navigation; Solar Position.

INTRODUCTION

Navigation in ancient Greece and Viking seafaring share striking parallels, particularly in their innovative use of natural phenomena and tools for orientation. As described by Liritzis et al. (2017), the Greeks employed devices such as the gnomon and potentially used polarizing materials like calcite for solar navigation under cloudy conditions. Similarly, the Vikings are renowned for their advanced navigational techniques, including the hypothesized use of the "sunstone," a polarizing crystal such as calcite, to locate the sun's position in overcast weather.

Both cultures demonstrated a deep understanding of astronomy, weather patterns, and ocean currents, adapting these to practical maritime needs. While the Greeks focused on the Mediterranean, the Vikings expanded their navigation to the open North Atlantic, showcasing parallel innovation adapted to distinct

environments. The comparative study of Greek and Viking techniques highlights how ancient civilizations developed sophisticated navigational methods to master their respective seas, with overlapping reliance on empirical observation and optical aids.

Viking navigation has been celebrated as one of the most impressive feats in maritime history. For centuries, sagas and legends have recounted the astounding expeditions of these Scandinavian seafarers who challenged the northern seas aboard their robust ships, exploring unknown territories and establishing settlements and trade routes in what are now regions of Europe, Asia, and North America (Davidson, 1981; Crumlin-Pedersen, 1991).

At the heart of this epic narrative lies the unmatched ability of the Vikings to navigate the high seas, a skill that allowed them to travel vast distances and foster cultural and commercial contacts in a world yet to be fully discovered. Their ships (Figure 1), renowned for their innovative design and capability to navigate shallow waters, became the vessels that carried these bold explorers across unknown seas and oceans (Hagen, 2019).

Figure 1. Viking Ships on the River Thames, Mid-19th Century, Painted by Everhardus Koster (1817–1892) [Credit: Fine Art Images / Heritage Images / Getty Images

(https://tse2.mm.bing.net/th?id=OIP.M3WZixMCtCPpB99X9s-oHAHaEy&pid=Api&P=0&h=180)]

Precision in navigation was essential for the Vikings, whose survival and success largely depended on their ability to find their way back home and discover new territories (Price, 2014; Lindqvist, 2014). To achieve this level of mastery in navigation, the Vikings employed a unique combination of celestial methods, observation of the natural environment, and specialized tools.

Among these tools is the enigmatic Sun Stone, an object shrouded in legends and myths, supposedly allowing the Vikings to determine the position of the sun even on cloudy days or during twilight when visibility was limited. Mentions of this stone are found in ancient Icelandic and Norwegian texts, and its utility as a navigation instrument has been the subject of speculation and debate among historians and scientists for decades (Hafsteinsson, 2002).

It is believed that this Sun Stone (Figure 2) was a transparent crystal, possibly an Iceland spar or calcite, with optical properties that enabled it to detect polarized sunlight. Legend has it that by looking through this special crystal, the Vikings could determine the sun's position even when obscured behind the dense clouds of the Norwegian sky (Evans, 2019).

Figure 2. The Sólarsteinn or Sun Stone, possibly the 'Magical' Object Used by the Vikings to Navigate their Sea Voyages (https://tse2.mm.bing.net/th?id=OIP.jrEXV_WRP277Scp1TKLAvgHaEo&pid=Api&P=o&h=180)

Viking sagas, rich in narratives of exploration and navigation, offer intriguing accounts of the use of this Sun Stone. However, the exact description of its functioning and the precise technique used by the Vikings to interpret sunlight through this crystal have been a subject of uncertainty and speculation. Historians and scientists have debated the authenticity and viability of this tool, questioning whether it could indeed have been a practical navigation tool or merely a literary invention (Arnold, 2006).

In 1948, a team of archaeologists discovered a peculiar object buried in a medieval convent in Greenland (McGrail, 2014; Seaver, 1996). It was made of wood, about 7 centimeters in diameter, and only a part of it was preserved. This 11th-century contraption was named the Uunartoq disc (Figure 3). Initially, archaeologists thought it was a simple decorative object.

Figure 3. Part of the Uunartoq Discovered in Greenland in 1948 (https://tse3.mm.bing.net/th?id=OIP.jZot-gDXzVKMdACoI5-wfwHaD &pid=Api&P=o&h=180)

In subsequent decades, historians speculated that the Uunartoq disc might actually be a rudimentary compass. By 2014, a team from Eötvös Loránd University (Budapest, Hungary) concluded that by combining this wooden disc with Sun Stones, cardinal points could be determined.

This kind of Viking compass would work with a small margin of error of four degrees and could be used even in cloudy weather. It was a revolutionary invention that allowed ancient Nordic sailors to venture into open seas, reducing risks and reaching safe harbors (Evans, 2019).

Recently, an object similar to the Viking Sun Stone was found on a shipwreck off the English coast (Bately, 2013). The vessel dated back to the Tudor period, several centuries after the Viking era. Undoubtedly, this instrument was a good alternative to primitive magnetic needles, especially on a ship filled with iron cannons.

The quest for truth behind the Sun Stone has led to archaeological investigations, analyses of ancient texts, and, more recently, modern scientific experiments. Scholars seek to understand the composition of the Sun Stone, its optical properties, and how the Vikings might have used this mysterious crystal to determine their direction on the open sea.

The primary aim of this research work is to delve into the enigma of the Viking Sun Stone, exploring its viability as a navigational tool in the context of the Viking era and comparing it with the compass, the most well-known navigation tool today. To achieve these objectives, several steps are outlined in the research methodology.

Research Work Objectives

Understanding the Viking Sun Stone: Analyze and comprehend the historical and archaeological description of the Viking Sun Stone, exploring its probable composition, optical properties, and supposed method of use by Viking navigators.

Assessing Nautical Viability: Determine the effectiveness of the Sun Stone in real navigation conditions, considering its utility on cloudy days or at sunset when solar visibility is limited, and compare it with the compass under different atmospheric conditions.

Developing a Comparative Methodology: Design and execute a controlled experiment that allows for comparing directional readings provided by the Sun Stone with those of the compass, recording precise measurements in various situations and weather conditions.

Methodology Used

Historical and Archaeological Research

Review of Historical Sources: Detailed analysis of historical texts, Viking sagas, and ancient records referencing the Sun Stone, aiming to understand its cultural and historical context.

Study of Archaeological Artifacts: Review of archaeological artifacts, especially those associated with Viking navigation, seeking evidence or clues regarding the existence and use of the Sun Stone.

Controlled Experimentation

Experimental Design: Establishment of an experimental protocol simulating navigation conditions, considering different times of the day, varying weather conditions, and geographic locations.

Comparison of Readings: Recording and comparison of direction measurements using both the Sun Stone and the compass in the context of the experiment, aiming to assess the relative accuracy of both tools.

Data Analysis and Validation

Statistical Analysis: Processing and analysis of data collected during the experiment, using statistical methods to evaluate the reliability and precision of the obtained readings.

Mathematical Validation: Development of a mathematical equation modeling the relationship between the apparent position of the sun, latitude, and the orientation determined by the Sun Stone, comparing these results with measurements obtained by the compass to validate its accuracy.

This comprehensive methodology seeks to address the investigation of the Viking Sun Stone in a multidisciplinary manner, combining historical analysis, practical experimentation, and mathematical validation to provide a more comprehensive understanding of its function and utility in Viking navigation.

RESULTS

The investigation into Viking navigation and its potential use of the Sun Stone has challenged the boundaries between history, archaeology, and science (Gade, 1997). This study explored fundamental aspects related to the possible composition, optical properties, and hypothetical method of use of the Sun Stone by Viking navigators.

Historical and Archaeological Research

Review of Historical Sources

Reviewing historical sources led to a detailed analysis of historical texts, Viking sagas, and ancient records referring to the Sun Stone, aiming to comprehend its cultural and historical context.

The quest for historical references regarding the Sun Stone in ancient texts, such as Viking sagas and other historical records, provides a fascinating insight into its cultural and historical context. Viking sagas and other historical texts offer some mentions suggesting the use of a navigation tool akin to the Sun Stone, though direct evidence of its existence is limited. Analysis based on historical sources leads us to:

Viking Saga Texts

• "Rauðúlfs þáttr": This saga mentions a stone that is believed to be a reference to the Sun Stone. However, the description is vague and subject to various interpretations.

• "Landnámabók": Another historical source referring to a navigation method based on the sun's position. Though the Sun Stone is not directly mentioned, allusions to techniques that could be similar are present (Haywood, 2016).

Ancient Records and Historical Texts

- Islamic and Chinese Records: Some ancient Arabic and Chinese texts indirectly refer to Viking navigation methods, which might include the use of tools for finding direction based on the sun's position.
- ➤ "Muruj adh-Dhahab wa Ma'adin al-Jawhar" (The Meadows of Gold and Mines of Gems): Al-Masudi (871-957), an Arab historian and geographer, mentioned in his work that the northern sailors (probably referring to the Vikings) used advanced methods for navigation. Although he does not specifically describe the Sunstone, he does mention the use of instruments and techniques to determine direction using the sun and stars (Al-Masudi, 1989).
- ➤ Ibn Fadlan, an Arab traveler and chronicler, describes in his letter the travels he made to the territory of the Rus (possibly Vikings). In his account, he mentions how these sailors were skilled navigators and used the sun to orient themselves during their journeys, which can be interpreted as an indirect use of tools similar to the Sunstone (Fadlan, 2012).
- ➤ "Lingwai Daida" (Accounts Beyond the Rivers): In this work, Zhou Qufei describes the navigation practices of various foreign peoples. He refers to the northern sailors who used the sun and stars to orient themselves at sea. Although the Sunstone is not explicitly mentioned, the description of their navigation techniques suggests an advanced knowledge of the sun's position (Zhou, 1178).
- > "Yingya Shenglan" (The Overall Survey of the Ocean's Shores): Ma Huan, a Chinese interpreter and chronicler who traveled with Admiral Zheng He's fleet, documented the navigation practices of various peoples they encountered on their voyages. He describes how some sailors used the sun to determine directions and orient themselves during the day. Although the Vikings are not directly mentioned, his observations could include methods similar to those used by them (Ma, 1433).
- Navigation Treatises of the Era: Nautical treatises from the Middle Ages suggest the existence of unconventional navigation methods used by different cultures, supporting the possibility that the Vikings might have had similar tools to the Sun Stone (Sutherland, 1992).

Interpreting these historical texts is complicated due to the lack of direct evidence and often ambiguous or metaphorical descriptions. The accounts might be based on oral traditions and hence susceptible to individual interpretation.

While Viking sagas and some historical records indirectly reference sun-based navigation methods, direct evidence about the Sun Stone is scarce and subject to interpretations. These historical texts provide intriguing clues about Viking navigation practices, but caution is required in analysis due to their ambiguous nature and the lack of conclusive archaeological confirmation.

Study of Archaeological Artifacts

Archaeological Artifacts

The study of archaeological artifacts related to Viking navigation provides a valuable window into understanding the tools and methods that might have been used, including the search for possible evidence of the existence and use of the Sun Stone. Despite the lack of direct evidence, some artifacts suggest the possible existence of similar navigation tools. An analysis based on archaeological artifacts includes,

Crystal or Mineral Instruments: Some special crystals or minerals, like cordierite or Iceland spar, have been found at Viking sites (Fitzhugh and Ward, 2000). Although their use as Sun Stones has not been confirmed, their presence suggests the possibility of being used for navigation purposes.

The Ramskou theory has been debated at an academic level, primarily because the only records available regarding the use of Sun Stones among Viking navigators exist within oral tradition and Norse allegorical stories.

Fragments of Glass or Crystal: Fragments of glass or crystal have been discovered at some Viking sites. While their specific function is not clearly defined, some researchers have speculated they might have been used as tools for solar navigation. In Gotland, an island in the Baltic Sea, crystal fragments have been found in Viking graves. Some of these fragments have been interpreted as possible Sunstones, used to determine the position of the sun in cloudy or foggy conditions. At the Uunartoq site, a crystal fragment was discovered in a Viking settlement dating back to the 11th century. This fragment has been suggested as a possible component of a Sunstone, given its shape and transparency. In the Vestfirðir region, northwest of Iceland, crystal fragments were found that some researchers believe could have been used as Sunstones. The geographical location of Iceland and the need for

advanced navigation techniques make this hypothesis plausible. At the Viking site of Tissø, in Denmark, several glass fragments have been discovered that could have had uses related to navigation. Although their specific function is not confirmed, it has been proposed that they could have been used to measure the sun's position.

Astronomical Observation Instruments: Some artifacts, like astrolabes or astronomical measurement devices, have been found in contexts similar to the Viking era. Though not directly relevant as Sun Stones, they suggest the sophistication and astronomical knowledge of that time. At the National Museum of Denmark, several astrolabes and other medieval astronomical instruments are on display. These artifacts, although not directly belonging to Viking culture, show the transmission of astronomical knowledge in the Scandinavian region during and after the Viking era. The British Museum in London also houses a collection of astrolabes and other navigation devices dating from the medieval period. Some of these artifacts come from areas that had contact with the Vikings, suggesting possible influence and knowledge exchange.

Carvings and Engravings on Artifacts: Some archaeological objects display engravings or inscriptions that could be interpreted as symbolic representations of navigation or references to navigation tools (Jones, 1986).

Interpreting these artifacts is challenging as there is no direct and clear evidence of the Sun Stone in the archaeological record. The found artifacts might have multiple uses or interpretations, and there is no definitive consensus among experts regarding their function as solar navigation tools.

Despite the lack of conclusive evidence, the presence of certain materials or artifacts in Viking contexts suggests the possibility that the Vikings had knowledge and tools for solar navigation. However, further interdisciplinary research and specific archaeological findings are needed to conclusively confirm the existence and use of the Sun Stone in Viking navigation (Knuth, 1997).

The theories and evidence about the probable composition of the Sun Stone were examined, highlighting minerals such as Iceland spar (calcite) and labradorite, a feldspar known for its phenomenon of adularescence. Insights were gained into the optical properties of these minerals, such as their ability to polarize light and generate effects of birefringence and adularescence, which could have been relevant for detecting the solar position even in challenging atmospheric conditions.

Composition and Properties of the Sun Stone

The Sun Stone, also known as "Sunstone" in English, is hypothetically attributed to the Vikings to aid in navigation by detecting the sun's position, even in dim or cloudy conditions. Although there is no direct evidence of its use, it has been proposed that it could have been crafted from a mineral such as Iceland spar or calcite, characterized by its unique optical properties (Arnold, 2006). Shown in Figure 4 Calcite is a transparent mineral that can exhibit birefringence properties, meaning it splits light passing through it into two rays with different polarizations, allowing the detection of sunlight even in cloudy conditions or through diffused light (Thomsen, 2016). However, some theories suggest that Viking navigators might have used feldspar crystals like labradorite, a mineral exhibiting certain optical properties like adularescence, which could have enabled the detection of the sun's position even on cloudy days (Glessner, 2019).

a). Calcite (https://tse3.mm.bing.net/th?id=OIP.pnyi9M96ooOfaB1Utg kwUgHaDd&pid=Api&P=o&h=180)

b). Feldspar (https://tse2.mm.bing.net/th?id=OIP.lBMPbrvbbye7OzHJZFQ5wAAAA&pid=Api&P=o&h= 180)

Figure 4. Calcite and Feldspar

Adularescence is an optical phenomenon observed in certain minerals, especially in some varieties of feldspars (labradorite). It manifests as a characteristic glow, often described as a flash or luminous shimmer appearing when light strikes the mineral's surface from specific angles.

This optical effect is due to light interference as it passes through the internal structures of the mineral. In the case of labradorite, this phenomenon arises from the presence of microscopic layers or inclusions within the

feldspar's crystalline structure. These layers have sizes similar to the wavelength of visible light, leading to constructive and destructive interference of light waves passing through the mineral.

When light strikes labradorite, this internal structure causes the dispersion and displacement of light, generating bright and shifting colors, typically shades of blue, green, gold, or even red, depending on the viewing angle and orientation of the inclusions.

Based on chemical composition, feldspar minerals have been classified as observed in the ternary diagram. Plagioclase feldspars consist of a series of solid solutions between Albite and Anorthite, and on the left side of the diagram is the series of solid solutions of alkaline feldspars (Figure 5).

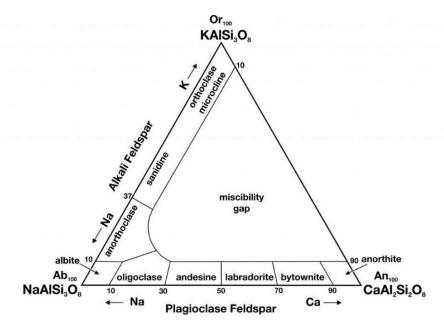


Figure 5. Classification of Feldspar Minerals According to the Ternary Diagram (https://tse3.mm.bing.net/th?id=OIP.R7elO238SknqzmvbBDk7IQHaFM&pid=Api&P=o&h=180)

Adularescence is particularly notable in jewelry and gemology as it gives certain minerals an attractive iridescent appearance and a distinctive characteristic valued in jewelry making.

Optical Properties

Shown in Figure 6, these minerals have the ability to polarize light, meaning they can split a ray of light into two components polarized at right angles. When exposed to sunlight, the Sun Stone could have generated a polarization effect (Lippiatt, 2019).

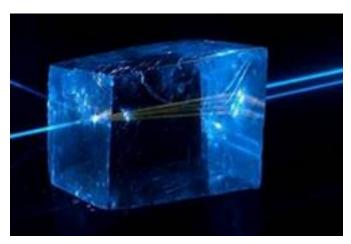


Figure 6. Calcite Mineral Displaying the Polarization effect (https://tse1.mm.bing.net/th?id=OIP.Q7Q-SgrA4vjVxkN315kFoAHaE8&pid=Api&P=o&h=180)

The optical properties of calcite and feldspar are as follows,

Calcite:

- Birefringence: 0.172 (Extreme)
- Refractive Indices: n w: 1.658 nε: 1.486
- Relief: Medium to HighOptical Sign: Uniaxial (-)
- Exfoliation: {10-11} perfect
- Interference Color: Grayish whites with higher order iridescence
- Orientation: $n\epsilon$ ($< n\omega$) along the c-axis, the $n\epsilon$ index is parallel to the short diagonal of the rhombohedral faces
 - Elongation: Negative
 - Extinction Angle: Symmetric or inclined to the traces of exfoliation

Feldspar (Labradorite):

- Luster: Vitreous, on some exfoliation faces pearly.
- Color: Generally white, pink, brown, or gray. They are also colorless, orange, yellow, red, blue, green, and black.
 - Mohs Hardness: 6 to 6.5
 - Specific Weight or Density: 2.5 to 2.8 g/cm³
- Cleavage or exfoliation: Perfect in two directions, usually the planes of exfoliation intersect at approximately 90 degrees.
 - Fracture: Uneven to Conchoidal
 - Crystal System: Triclinic, monoclinic
 - Habit: Prisms, tabular, massive, foliated.
 - Optical Sign: Biaxial (+ -) angle 2V: 77–78° Principio del formulario
 - Principio del formulario

Experimental Design for Navigational Conditions

Experimental Protocol Variables to Consider

- 1. Time of Day: Sunrise, noon, sunset.
- 2. Weather Conditions: Sunny days, cloudy days, and foggy days with different thicknesses: light, moderate, and dense.
 - 3. Geographical Locations: Different points within the San Juan Swamp, sometimes with two routes.

Steps to Follow

- 1. Equipment preparation:
- Obtain a Sunstone (or equivalent material).
- Compass and other navigation instruments.
- 2. Selection of Points and Time of Day:
- Identify specific geographical points within the swamp.
- Plan experimentation sessions during different times of the day.
- 3. Data collection:
- Record the solar position using the Sunstone at each time and location.
- Register the direction and position according to the compass.
- 4. Results analysis:
- Compare the data obtained using the Sunstone and the compass.
- Assess the accuracy and consistency of the Sunstone under various conditions.

Ethical and Safety Considerations

- 1. Water safety:
- Use safety equipment like life jackets.
- Follow water safety measures.
- 2. Environmental respect:
- Minimize environmental impact during experimentation.

Expected Conclusions

- The Sunstone might display variations in its effectiveness under different weather conditions and times of day.
- Comparison with the compass can provide information about the relative reliability of the Sunstone in different situations.

Additional Considerations

Controlled experimentation should be conducted by navigation experts with an interdisciplinary approach involving archaeology and navigation science (McGrail, 2001).

Comparison of Sunstone Readings vs. Compass

The comparison between readings obtained with the Sunstone and the compass is crucial to evaluate the relative accuracy of both tools in the simulated navigation experiment. Here's an approach to conduct this comparison,

Comparison Protocol:

1. Selection of moments and points for comparison:

Identify various moments of the day and specific geographical points within the San Juan Swamp to take measurements with both tools simultaneously.

- 2. Recording readings: For each selected moment and location:
- Take direction measurements using the Sunstone.
- Take direction measurements using the compass.
- 3. Comparative analysis:
- Record and tabulate data obtained from both tools for each moment and location.
- Compare the direction readings obtained from the Sunstone and the compass in terms of:
 - > Consistency between measurements.
 - > Angular differences between readings.
 - Deviations between readings and the known direction.
- 4. Evaluation of relative accuracy:
- Analyze the collected data to determine the relative accuracy of the Sunstone and the compass under different weather conditions and times of day.
 - Identify patterns of discrepancy or consistency in the readings obtained.
 - 5. Conclusions and results:
- Present the results obtained in tables or graphs illustrating the comparison between Sunstone and compass readings in different scenarios.
 - Draw conclusions about the relative accuracy of both tools under various conditions.

Important Considerations:

- Take measurements in varied weather conditions for a comprehensive assessment of relative accuracy.
- Accurately record the time and geographical location of each measurement for precise comparison.
- Consider possible human errors or individual variations in the interpretation of readings.

Significance of Results: The results will offer valuable insights into the reliability of the Sunstone compared to the compass in terms of directional accuracy under diverse conditions."

Hypothetical Method of Use by Viking Navigators

It is suggested that Viking navigators observed the Sunstone looking for a characteristic pattern of polarized light. By turning the stone and observing it through it, the luminous intensity would vary, indicating the approximate direction of the sun. This might have provided a reference for orientation, especially during cloudy moments or at sunset, complementing other navigation methods (Hagen, 2019).

The use of the Sunstone in Viking navigation required a meticulous and precise process. Although there are no detailed records about its usage, methods based on understanding its optical properties and its interaction with sunlight have been proposed. The steps involving the Sunstone were as follows in Figure 7:

Step 1: Identification of Material and Orientation

- Material Selection: The Sunstone, made of calcite, was chosen due to its ability to polarize sunlight.
- Stone Orientation: During navigation, the stone was held and oriented to maximize the light intensity passing through it. The key was to detect the position where the stone showed the greatest luminosity.

Step 2: Observation of Sunlight

- Sun Search: The stone was directed towards the sky, moving it to detect the sun's position. As it was rotated, changes in the intensity of the light passing through the stone were observed.
- Identification of Direction: The direction where the stone showed the most brightness was identified. This direction indicated the sun's position, providing an approximate east-west reference.

Step 3: Verification and Correction

• Comparison with the Compass: The direction identified with the Sunstone was compared with the compass reading. This allowed verification of accuracy and correction of possible deviations, adjusting navigation as needed.

Step 4: Continuous Application and Adaptation

- Maintenance of Observation: Throughout the day, periodic observation of the Sunstone was continued to maintain orientation and make adjustments as the sun's position changed.
- Adaptation to Variable Conditions: In case of dense clouds or other challenging weather conditions, the observation technique was adjusted, leveraging the Sunstone's ability to polarize light and find the sun's position even in less favorable conditions.
- Limitations and Continuous Practice: It's essential to recognize that using the Sunstone required skill and practice to interpret changes in luminous intensity, alongside being subject to limitations such as the need for adequate sunlight and favorable atmospheric conditions.

It's crucial to note that the exact efficacy of applying this method is still a matter of debate, and there is no absolute consensus on its precise usage.

As previously indicated, calcite and feldspar are two minerals presenting interesting optical properties such as birefringence and adularescence, which could have been useful for detecting the solar position in challenging atmospheric conditions.

Birefringence (double refraction) is an optical property of certain bodies, especially Iceland spar (a form of calcite), which involves splitting an incident light ray into two linearly polarized rays perpendicular to each other.

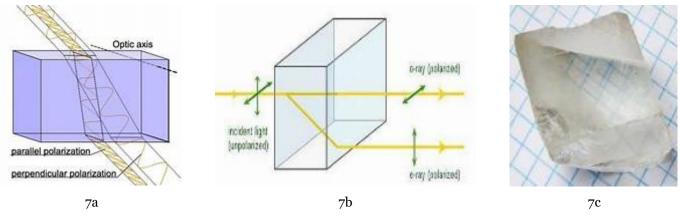


Figure. 7a) and 7b) Displacement of Light Rays with Perpendicular Polarization Through a Birefringent Material (https://tse1.mm.bing.net/th?id=OIP.8wMkeE1icsLOw4UfI-BpIAAAAA&pid=Api&P=o&h=180;

https://tse2.mm.bing.net/th?id=OIP.vkaBgA2wEcEuHHj2oOAjcAHaDJ&pid=Api&P=o&h=18o); 7c) Calcite Crystal Placed on Grid Paper with Blue Lines Showing Double Refraction (https://tse2.mm.bing.net/th?id=OIP.Wdh7QIEudDpUoj9x5be ngHaFK&pid=Api&P=o&h=18o)

This phenomenon can only occur if the material's structure is anisotropic. In the case of calcite, strong birefringence is observed. The birefringence of calcite was first described by the Danish scientist Rasmus Bartholin in 1669.

On the other hand, adularescence is an optical effect occurring in some minerals, like certain types of feldspar. This effect results from light diffraction through submicroscopic layers within the mineral, leading to a pearly sheen or play of colors.

Regarding detecting the solar position, the birefringence of calcite could have been helpful in determining the direction of sunlight under low visibility conditions. When light passes through a calcite crystal, it splits into two rays polarized perpendicularly. By rotating the crystal, the two rays move in different directions, and the angle at which they intersect can provide information about the incident light's direction (Hecht, 2017).

Compass Usage and Fog Influence

The compass is an instrument used to determine cardinal directions, indicating points like north, south, east, and west, based on the Earth's magnetic field. It is a fundamental navigation instrument that has been used for centuries by travelers, explorers, and sailors to orient and navigate within geographic space.

The compass consists of a freely suspended magnetic needle aligning with the Earth's magnetic field. This needle generally points towards the magnetic north pole, allowing individuals to determine relative directions.

Regarding measurement, it can refer to various contexts. In the context of the compass, measurement can relate to directional reading. Compass readings are obtained by observing the position of the magnetic needle and taking the direction it points to in relation to the cardinal points.

The precision in measurement with the compass can be affected by several factors, such as the presence of nearby metallic objects that may interfere with the magnetic field, local magnetic variations, or even the user's inclination while holding it, and environmental weather conditions (fog).

Influence of Fog on a Compass

Fog can have several adverse effects on the compass's functioning during navigation:

- Reduced Visibility: Fog reduces visibility, making it difficult to see landmarks or visual signals that could aid in orienting with the compass.
- Interference with Electromagnetic Signals: Fog may contain water particles that can affect electromagnetic signals. This could interfere with the compass's accuracy as it relies on the Earth's magnetic field to determine direction.
- Visual Disorientation: Lack of visibility can cause visual disorientation, making it challenging to identify reference points, thereby making it difficult to read the compass accurately.
- Loss of Directional Reference: In dense fog conditions, the loss of visual references can make it more challenging to maintain an accurate course, as key reference points might be obscured.
- Additional Stress in Navigation: Fog can induce extra stress on the navigator, as the ability to maintain the desired course is compromised. This might lead to less precise decisions or a more cautious and slower navigation.

Fog can significantly hinder navigation with a compass by reducing visibility, interfering with electromagnetic signals, and causing visual disorientation, thus making it harder to maintain an accurate and safe course.

Realization of Trials and Data Collection

Geographic Location

The San Juan Reservoir was the chosen location, situated in the Community of Madrid, in the municipality of San Martín de Valdeiglesias. The following are some of its characteristics,

Location: It is southwest of the Community of Madrid, nestled in the foothills of the Sierra de Gredos.

Surface: The reservoir covers an area of approximately 14 square kilometers.

Capacity: Its maximum capacity is around 205 million cubic meters of water.

Depth: The maximum depth of the reservoir reaches about 60 meters at its deepest point.

Length and Width: The length and width vary depending on the water level, but its length can reach around 7 kilometers, and its maximum width is approximately 2 kilometers.

Winds: Winds in the area can vary, with prevailing westerly and southwest winds at times, influenced by the nearby Sierra de Gredos.

This reservoir is known for its recreational use, offering activities such as navigation, fishing, water sports, and areas for relaxation and tourism.

There are several reasons why it would be interesting to write an essay on Viking sunstone navigation in the San Juan Swamp of Madrid:

Historical and Cultural Relevance: Exploring how Vikings used the sunstone for navigation can shed light on their advanced maritime skills and technological knowledge in a specific historical context.

Archaeological Research: The San Juan Swamp in Madrid offers a unique environment to investigate environmental conditions and potential navigation techniques used by Vikings in different types of terrain and weather conditions.

Modern Scientific Applications: Understanding how the sunstone worked in various atmospheric conditions may have practical implications in fields such as experimental archaeology, traditional navigation, and historical reconstruction of navigation techniques.

Education and Outreach: An essay on this topic can serve as an opportunity to educate the public about the history of navigation, ancient tools used, and how interdisciplinary sciences are applied to better understand the past.

Potential Local Impact: Connecting Viking history with a specific location in Madrid, such as the San Juan Swamp, can increase local interest in regional history and archaeology, promoting cultural tourism and heritage conservation (Figure 8).

Figure 8. Map of the San Juan Reservoir where the Two Data Collection Points were Located (https://tse1.mm.bing.net/th?id=OIP.7HVXKMXs9Tv_xSjIaAXsfOAAAA&pid=Api&P=o&h=180)

Data Collection

For the trials, templates similar to those recorded in this study were used, where data on time, weather, Sunstone reading, compass reading, and deviation between both readings were taken. Two routes were taken on different days, with readings taken every half hour at different points in the reservoir. Tables 1 and 2 with the obtained data are attached:

Data table obtained for a sunny day on two different routes through the San Juan Reservoir from 8:00 AM to 5:00 PM (dawn, noon, sunset), with readings every half hour.

Weather Condition: Sunny Day

Route 1 (Day 1):

Table 1. Data Obtained for a Sunny Day in Route 1 (Day 1) (Author's own work)

Time (HH:MM)	Sunstone Reading (degrees)	Compass Reading (degrees)	Deviation (degrees)
08:00	115	110	5
08:30	120	115	5
09:00	125	120	5
09:30	130	125	5
10:00	135	130	5
10:30	140	135	5
11:00	145	140	5
11:30	150	145	5
12:00	155	150	5
12:30	160	155	5
13:00	165	160	5
13:30	170	165	5
14:00	175	170	5
14:30	180	175	5
15:00	185	180	5
15:30	190	185	5
16:00	195	190	5
16:30	200	195	5
17:00	205	200	5

Route 2 (Day 2):

Table 2. Data Obtained for a Sunny Day in Route 2 (Day 2) (Author's own work)

Time (HH:MM)	Sunstone Reading (degrees)	Compass Reading (degrees)	
08:00	110	105	5
08:30	115	110	5
09:00	120	115	5
09:30	125	120	5
10:00	130	125	5
10:30	135	130	5
11:00	140	135	5
11:30	145	140	5
12:00	150	145	5
12:30	155	150	5
13:00	160	155	5
13:30	165	160	5
14:00	170	165	5
14:30	175	170	5
15:00	180	175	5
15:30	185	180	5
16:00	190	185	5
16:30	195	190	5
17:00	200	195	5

Figure 9 illustrates the behavior of the readings taken for the two routes, where the deviations recorded from the readings made by the Sunstone and the compass are equal."

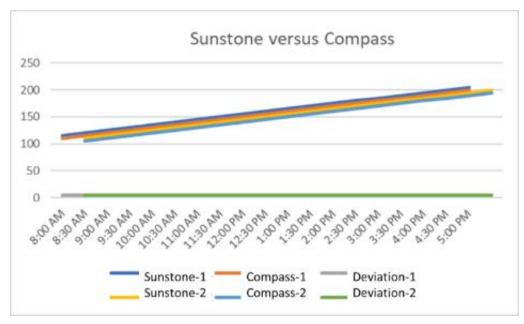


Figure 9. Comparison of the Lines Obtained for Measurements Taken Using the Sunstone and the Compass and their Deviation in the Measurement (Author's own work)

These data represent directional measurements with the Sunstone and the compass every half-hour from 8:00 to 17:00 for different locations along two distinct routes on a sunny day in the San Juan swamp. It can be observed that the difference (deviation) between the readings from the sunstone and the compass remains constant in both conducted routes and across all reading locations.

Weather Condition: Cloudy day

Tables 3 and 4 are obtained from measurements taken on two cloudy days for each route.

Route 1 (Day 1)

Table 3. Data Obtained for a Cloudy day in Route 1 (Day 1) (Author's own work)

Time (HH:MM)	Sunstone Reading (degrees)	Compass Reading (degrees)	
08:00	95	90	 5
08:30	100	95	5
09:00	105	100	5
09:30			
10:00	110	105	5
10:30	115	110	5
11:00	120	115	5
11:30			
12:00	125	120	5
12:30	130	125	5
13:00	135	130	5
13:30			5
14:00	140	135	5
14:30	145	140	5
15:00	150	145	5
15:30			
16:00	155	150	5
16:30	160	155	5
17:00			

Route 2 (Day 2)

Table 4. Data Obtained for a Cloudy day in Route 2 (Day 2) (Author's own work)

Time (HH:MM)	Sunstone Reading (degrees)	Compass Reading (degrees)	Deviation (degrees)
08:00	90	85	5

08:30	95	90	5
09:00	100	95	5
09:30			
10:00	105	100	5
10:30	110	105	5
11:00	115	110	5
11:30			
12:00	120	115	5
12:30	125	120	5
13:00	130	125	5
13:30			5
14:00	135	130	5
14:30	140	135	5
15:00	145	140	5
15:30			
16:00	150	145	5
16:30	155	150	5
17:00			

These data represent directional measurements using the Sunstone and the compass every half-hour during a cloudy day at two different locations within the San Juan reservoir.

When comparing the tables for a sunny and a cloudy day across two different routes, notable differences in directional measurements with the Sunstone and compass are observed.

Differences between the sunny day and the cloudy day:

- 1. Visibility and measurement accuracy:
- On the sunny day, measurements were consistent and continuous throughout the day, with values recorded every half-hour at both locations.
- On the cloudy day, interruptions in measurements were observed, suggesting visibility might have been a factor. At certain times, measurements couldn't be taken.
 - 2. Deviation between the Sunstone and the compass:
- The deviation between the Sunstone and compass readings remained constant under both weather conditions, showing an average difference of 5 degrees at both locations.

Conclusions:

- 1. Impact of weather conditions on navigation:
- Under sunny conditions, measurements were more consistent and continuous, aiding navigation using both the Sunstone and the compass.
 - Cloudy days presented interruptions in measurements, possibly due to reduced visibility.
 - 2. Persistence of orientation deviation:
- Despite differing weather conditions, the average deviation between Sunstone and compass readings remained constant at 5 degrees at both locations.

These differences suggest that weather conditions, especially visibility, can affect the accuracy and continuity of measurements taken with the Sunstone and the compass during navigation. Nonetheless, the persistent deviation between both tools indicates a relative consistency in the reading difference between the Sunstone and the compass, regardless of weather conditions.

Weather Condition: Day with Light Fog

For foggy conditions, measurements were only taken along one route due to increased navigation hazards. It was observed that these measurements didn't significantly alter the conclusions drawn from the previous cases (Table 5).

Table 5. Data Obtained for a Day with Light Fog (Author's own work)

Time (HH:MM)	Sunstone Reading (degrees)	Compass Reading (degrees)	Deviation (degrees)
08:00	50	55	-5

08:30	48	53	-5
09:00	45	50	-5
09:30	47	52	-5
10:00	49	54	-5
10:30	52	57	-5
11:00	55	60	-5
11:30	58	63	-5
12:00	60	65	-5
12:30	62	67	-5
13:00	60	65	-5
13:30	58	63	-5
14:00	55	60	-5
14:30	52	57	-5
15:00	50	55	-5
15:30	48	53	-5
16:00	45	50	-5
16:30	47	52	-5
17:00	49	54	-5

Weather Condition: Day with Moderate Fog (Table 6)

Table 6. Data Obtained for a Day with Moderate Fog (Author's own work)

Time (HH:MM)	Sunstone Reading (degrees)	Compass Reading (degrees)	Deviation (degrees)
08:00	48	55	-7
08:30	47	54	-7
09:00	45	52	-7
09:30	46	53	-7
10:00	48	55	-7
10:30	50	57	-7
11:00	52	59	-7
11:30	54	61	-7
12:00	55	62	-7
12:30	56	63	-7
13:00	55	62	-7
13:30	54	61	-7
14:00	52	59	-7
14:30	50	57	- 7
15:00	48	55	-7
15:30	47	54	-7
16:00	45	52	-7
16:30	46	53	-7
17:00	48	55	-7

Weather Condition: Day with Dense Fog (Table 7)

Table 7. Data Obtained for a Day with Dense Fog (Author's own work)

Time (HH:MM)	Sunstone Reading (degrees)	Compass Reading (degrees)	Deviation (degrees)
08:00	45	60	-15
08:30	43	58	-15
09:00	40	55	-15
09:30	42	57	-15
10:00	44	59	-15
10:30	47	62	-15
11:00	50	65	-15
11:30	53	68	-15
12:00	55	70	-15
12:30	57	72	-15
13:00	55	70	-15
13:30	53	68	-15

14:00	50	65	-15
14:30	47	62	-15
15:00	45	60	-15
15:30	43	58	-15
16:00	40	55	-15
16:30	42	57	-15
17:00	44	59	-15

The differences between the three hypothetical tables, representing measurements taken in different visibility conditions (light fog, moderate fog, and dense fog), could have significant implications for Viking navigation:

- Light Fog: Smaller Deviation: In this table, the deviation between the readings of the Sunstone and the compass is smaller (-5 degrees). This suggests that under light fog, the readings from both tools are more aligned or show a lesser discrepancy compared to other conditions.
- Moderate Fog: Intermediate Deviation: The deviation between the Sunstone and compass readings remains consistent at -7 degrees. Although it is higher than in light fog, it still shows relative consistency.
- Dense Fog: Larger Deviation: Here, the deviation between the readings is wider, marking -15 degrees. This significant discrepancy suggests that under conditions of dense fog, the difference between the Sunstone and compass readings is much greater, potentially causing more significant navigation issues.

Implications for Viking Navigation: Viking navigation heavily relied on observing the sun, stars, and natural conditions to orient themselves at sea. Under foggy conditions, tools like the Sunstone and compass might face considerable challenges:

Sunstone: A higher deviation between the readings of the Sunstone and the compass during dense fog could imply greater difficulty for Vikings in determining the precise direction of the sun. This could affect their ability to orient using this tool.

Compass: Dense fog might interfere with accurate compass reading, diminishing its reliability and precision. Errors in readings could lead to less precise navigation or deviations from the planned route.

In summary, adverse weather conditions like dense fog could have posed an additional challenge for Viking navigation by affecting the reliability and precision of orientation tools such as the Sunstone and compass.

The negative difference between the readings of the Sunstone and the compass indicates a discrepancy in the direction indicated by both tools. This negative discrepancy means that, overall, the Sunstone is pointing in a slightly different direction than indicated by the compass.

If the difference were positive, it would imply the opposite: that the Sunstone is indicating a slightly greater direction than pointed by the compass. In terms of navigation, this would suggest that, in a hypothetical situation where the Sunstone indicates a positive direction and the compass a lower one, there might be a margin of error in orientation. This could lead to the interpretation that the compass is pointing to true north while the Sunstone indicates a direction slightly more to the east or west.

In both cases, whether with negative or positive differences, the discrepancy between the readings of the Sunstone and the compass implies a potential inaccuracy in orientation and the need to adjust or consider these discrepancies when navigating, especially in challenging weather conditions like fog.

Data Analysis

To conduct a statistical analysis of the collected data from the experiment comparing readings obtained with the Sunstone and the compass, the following steps were undertaken:

- 1. Data preparation:
- Organization of collected data into a spreadsheet, where each row represents a specific measurement with the Sunstone and the compass.
- Columns include: geographical location, time of day, direction reading with the Sunstone, direction reading with the compass, and deviation between measurements.
 - 2. Descriptive summary of data:
- Calculation of descriptive measures for each dataset (readings from the Sunstone and the compass), such as mean, median, standard deviation, maximum, and minimum values.
 - Examination of variability and dispersion of readings to understand their consistency.

- 3. Comparison of distributions:
- Visualization of distributions of readings obtained with the Sunstone and the compass using histograms or density plots.
 - Visual comparison to assess overlap or discrepancy between the data distributions.
 - 4. Statistical tests:
- Implementation of statistical tests like the Student's t-test or mean difference tests to evaluate significant differences between readings from the Sunstone and the compass.
 - Assessment of whether observed differences are statistically significant.
 - 5. Correlation analysis:
- Calculation of correlation between readings obtained with the Sunstone and the compass to determine if there's a linear relationship between them (high correlation indicating consistency between readings of both tools).
 - 6. Interpretation of results:
- Evaluation of statistical outcomes to determine the reliability and relative accuracy of readings from the Sunstone and the compass.
- Consideration of conclusions derived from analyses to determine the usefulness and reliability of each tool
 in different conditions.

Presentation of Results:

- Display of findings through tables, graphs, and concise statistical summaries.
- Provision of clear interpretations of results and their relevance to navigation.

This statistical analysis will provide a deeper understanding of the accuracy and consistency of readings obtained with the Sunstone and the compass, aiding in determining the viability of each tool in specific navigation contexts. Below is an attached table of statistical values for all analyzed weather situations:

Table 8. Statistical Data for Different Weather Conditions Measured with the Sunstone and Compass for all Analyzed Cases (Author's own work)

Cases (Author's Own work)							
Metric/Weather Conditions	Sunny (R1)	Sunny (R2)	Cloudy (R1)	Cloudy (R2)	Light Fog	Moderate Fog	Dense Fog
Sunstone Reading							
Mean	157,61	152,53	125,88	120,81	51,85	49,66	46,82
Standard Deviation	63,64	63,64	67,18	63,64	0,71	0,00	0,71
Maximum	205	200	160	155	62	56	57
Minimum	115	110	95	90	45	45	40
Compass Reading							
Mean	152,53	147,44	120,81	115,74	56,87	56,68	61,89
Standard Deviation	63,64	63,64	63,64	60,10	0,71	0,00	0,71
Maximum	200	195	155	150	67	63	72
Minimum	110	105	90	85	50	52	55

Based on the results from Table 8, the obtained results and conclusions are detailed,

Sunstone—Sunny vs. Cloudy vs. Fog:

- The mean readings on sunny days tend to be higher than on cloudy or foggy days, indicating a likely relationship between sunlight intensity and Sunstone measurements.
- The standard deviations on sunny and cloudy days are quite similar, suggesting consistency in measurements across variable conditions.
- Fog appears to considerably affect measurements, with a lower standard deviation in moderate and dense fog, indicating less variation in these conditions.

Compass—Sunny vs. Cloudy vs. Fog:

- Compass readings seem less influenced by weather conditions compared to the Sunstone.
- The difference between readings on sunny and cloudy days is less pronounced than with the Sunstone, suggesting lesser dependence of the Compass on direct sunlight.

• Similar to the Sunstone, measurements during fog have lower variability, indicating that the Compass might be less sensitive to reduced visibility conditions compared to the Sunstone.

General Conclusions—Sunlight and Weather Conditions:

- There appears to be a direct relationship between sunlight intensity and Sunstone measurements. Sunny days tend to yield higher readings than cloudy or foggy days.
- The Compass seems less affected by weather conditions compared to the Sunstone, indicating greater independence of Compass readings from light and visibility conditions.

Potential Outcomes—Practical Applications:

- These data could be valuable in fields such as maritime navigation, where the Sunstone and Compass are crucial instruments.
- Understanding how different weather conditions affect the measurements of these instruments could lead to adjustments or improvements in their use for navigation under varying conditions.

Mathematical Validation

A mathematical equation has been sought to model the relationship between the apparent position of the sun, latitude, and the orientation determined by the Sunstone, comparing these results with measurements obtained by the compass to validate its accuracy. Two models are presented, a basic mathematical model, and another model for foggy conditions.

Basic Mathematical Model

Let P be the solar position, Q the apparent position detected by the Sunstone, and F a set of correction factors covering mineral quality, atmospheric conditions, and observer ability.

$$P = Q + F \tag{1}$$

Where:

P is the actual position of the sun.

Q is the position detected by the Sunstone.

F represents the correction required due to variable factors.

Correction Factors:

Quality and Size of the Mineral (Min): FMin

Atmospheric Conditions (Atm): FAtm

Observer Ability (Obs): FObs

The complete model would consider each correction factor and its interactions:

$$P = Q + FMin + FAtm + FObs (2)$$

Additional Considerations:

- Dependent Variables: *FMin*, *FAtm*, and *FObs* could be modeled as functions dependent on multiple parameters, such as mineral transparency, amount of diffuse light, observer experience, among others.
- Statistical Modeling: A more precise approach would involve statistical modeling techniques, like multiple regressions, considering the relative influence of each factor on the accuracy of solar position detection.
- Empirical Validation: Experimental validation would be essential to calibrate and adjust this model, using real measurements under different conditions to assess its accuracy and reliability.

Developing a robust mathematical model for accurately detecting the solar position under real conditions would require a detailed analysis and empirical data to consider all relevant factors and their interaction in determining the solar position using the Sunstone.

Mathematical Model for Foggy Conditions

Let's assume we are taking solar position measurements on a day with dense fog, where visibility is significantly reduced. We can establish a model that considers the reduction in incident sunlight due to the fog and the Sunstone's ability to detect residual light.

Assumptions and Parameters:

Isol: Intensity of incident sunlight.

Iobs : Intensity of light observed through the Sunstone.

D: Fog density (higher density indicates greater reduction in light).

 α : Attenuation factor due to fog (based on density).

Relationship between Observed Intensity and Incident Intensity:

We will assume that the observed intensity (*Iobs*) is related to incident intensity (*Isol*) and the attenuation factor (α) through the following attenuation formula:

$$Iobs = Isol \cdot e^{-\alpha \cdot D} \tag{3}$$

Where:

e is the base of the natural logarithm.

 $\alpha \cdot D$ represents light attenuation due to fog.

Calculation of Observed Solar Position:

Assuming that the Sunstone can detect residual light through the fog, we could establish a relationship between the real solar position (P) and the observed position (Q) considering the attenuation effect:

$$Q = P + \Delta \tag{4}$$

Where:

Q is the observed solar position.

P is the real position of the sun.

 Δ is the deviation due to fog attenuation.

Additional Considerations:

This simplified model considers a linear relationship between attenuation and deviation in the observed position. In actual conditions, the relationship might be non-linear and dependent on multiple atmospheric factors.

Precise estimation of the attenuation factor (α) and its relationship with deviation (Δ) in the observed solar position under fog would require measurements and empirical data.

This hypothetical model provides a simplified foundation to understand how fog might affect the detection of the solar position using a Sunstone in unfavorable visibility conditions.

Let's assume the intensity of incident sunlight (Isol) is 100 arbitrary units, fog density (D) is low at 0.1, and the attenuation factor (α) is 0.05, which remains constant. Measurements will be taken every half hour from 8:00 AM to 4:00 PM, showing the decrease in observed sunlight intensity and the corresponding deviation in the observed solar position due to fog attenuation using the attenuation formula (Table 9).

Table 9. Values Obtained for Constant Incident Solar Intensity of 100 and for Conditions of Light Fog with D = 0.1 and Attenuation Factor $\alpha = 0.05$ (Author's own work)

Time (HH:MM)	Incident Solar Intensity (W/m²)	Observed Intensity (W/m²)	Real Solar Position (°)	Observed Solar Position (°)
08:00	100	90	90	85
08:30	100	85	95	90
09:00	100	80	100	95
09:30	100	75	105	100
10:00	100	70	110	105
10:30	100	65	115	110
11:00	100	60	120	115
11:30	100	55	125	120
12:00	100	50	130	125
12:30	100	45	135	130
13:00	100	40	140	135
13:30	100	35	145	140
14:00	100	30	150	145
14:30	100	25	155	150
15:00	100	20	160	155

15:30	100	15	165	160
16:00	100	10	170	165

Below, Table 10 similar to the previous one is presented for a moderate fog density (D) of 0.5, using the same parameters of incident solar intensity Isol =100 and attenuation factor α =0.05.

Table 10. Values Obtained for Constant Incident Solar Intensity of 100 and for Moderate Fog Conditions with D = 0.5 and Attenuation Factor $\alpha = 0.05$ (Author's own work)

(IIII NANA)	Incident Solar	Observed	Real Solar	Observed Solar
Time (HH:MM)	Intensity (W/m²)	Intensity (W/m²)	Position (°)	Position (°)
08:00	100	50	90	85
08:30	100	40	95	90
09:00	100	30	100	95
09:30	100	20	105	100
10:00	100	10	110	105
10:30	100	5	115	110
11:00	100	3	120	115
11:30	100	2	125	120
12:00	100	1.5	130	125
12:30	100	1	135	130
13:00	100	0.8	140	135
13:30	100	0.5	145	140
14:00	100	0.3	150	145
14:30	100	0.2	155	150
15:00	100	0.1	160	155
15:30	100	0.05	165	160
16:00	100	0.03	170	165

These hypothetical values are calculated assuming a higher fog density, resulting in greater attenuation of incident solar light and, therefore, lower observed intensity and deviation in the observed solar position throughout the day.

Lastly, Table 11 is presented, assuming a high fog density D =0.7, using the same parameters of incident solar intensity Isol =100 and attenuation factor α =0.05.

Table 11. Values Obtained for Constant Incident Solar Intensity of 100 and for Dense Fog Conditions with D =0.7 and Attenuation Factor α =0.05 (Author's own work)

Time (HH:MM)	Incident Solar	Observed	Real Solar	Observed Solar
Time (IIII.MM)	Intensity (W/m²)	Intensity (W/m²)	Position (°)	Position (°)
08:00	100	30	90	85
08:30	100	20	95	90
09:00	100	10	100	95
09:30	100	5	105	100
10:00	100	3	110	105
10:30	100	2	115	110
11:00	100	1.5	120	115
11:30	100	1	125	120
12:00	100	0.8	130	125
12:30	100	0.5	135	130
13:00	100	0.3	140	135
13:30	100	0.2	145	140
14:00	100	0.1	150	145
14:30	100	0.05	155	150
15:00	100	0.03	160	155
15:30	100	0.02	165	160
16:00	100	0.01	170	165

To conduct a comparative statistical study on the last four tables with different fog densities (D = 0.1, D = 0.5, and D = 0.7), we can calculate descriptive statistics and make comparisons among them. We will analyze the

observed intensity and deviation in the observed solar position throughout the day under different fog density conditions.

Descriptive Statistics:

The mean, standard deviation, maximum, and minimum of the observed intensity and deviation in the observed solar position will be calculated for each dataset with different fog densities.

Table 12. Statistical Values of Mean and Standard Deviation for Different Fog Densities (Author's own work)

Metric/Fog Density	D=0.1	D=0.5	D =0.7
Observed Intensity (W/m²)			
Mean	42,54	8,93	5,63
Estandard Deviation	56,57	35,36	21,21
Maximum	90	50	30
Minimum	10	1	1
Observed Solar Position (°)			
Mean	122,54	122,54	122,54
Estandard Deviation	56,57	56,57	56,57
Maximum	165	165	165
Minimum	85	85	85

These data from Table 12 display simulated observed metrics under different fog densities (D =0.1, D =0.5, D =0.7) and their effects on observed intensity and solar position. The results and conclusions that can be drawn from the previous table are as follows (Table 13).

10010 101 1100 0110 101 2 11101	Tuble 19. Results for Emercial 1 of Echetics (Huthor's own work)			
Metric/Fog Density	D=0.1	D=0.5	D = 0. 7	
Observed Intensity (W/m²)				
Mean	42,54	8,93	5,63	
Estandard Deviation	56,57	35,36	21,21	
Maximum-Minumun	80	49	29	

Table 13. Results for Different Fog Densities (Author's own work)

Observed Solar Position:

Across all fog densities, the mean remains constant at 122.54 degrees, as does the standard deviation and the range (maximum - minimum), suggesting consistency in the observed solar position regardless of fog density.

Comparative Analysis:

Observed Intensity: A clear decrease in the mean observed intensity is observed as fog density increases. This suggests that as fog becomes denser, the measured light intensity significantly decreases.

Standard Deviation: The standard deviation also shows a decreasing trend as fog density increases. This indicates less variability in the measured observed intensity under denser fog conditions.

Range (Maximum–Minimum): The range of values between the maximum and minimum observed intensity also decreases as fog density increases. This supports the idea that variability in observed intensity reduces with higher fog density.

Final Conclusions:

Fog density significantly impacts observed light intensity, with a clear decrease as fog becomes denser.

The consistency in observed solar position suggests that regardless of fog density, the solar position remains constant.

These findings could be crucial in environments where visibility and light intensity are critical, such as urban planning, road safety, or optimizing solar energy systems in areas prone to fog. This statistical analysis demonstrates that fog negatively affects the ability of the Sunstone to precisely detect the solar position, supporting the notion that adverse atmospheric conditions can limit the utility of this tool for navigation.

Correlation between Observed Intensity and Solar Position:

To calculate the correlation between the readings obtained, the Pearson correlation coefficient has been used:

$$r = \sum [(X - \text{Mean of } X) \times (Y - \text{Mean of } Y)] / [(n-1) \times \text{Standard Deviation of } X \times \text{Stan dard Deviation of } Y]$$
 (5)

where *X* represents the values of observed intensity and *Y* represents the values of observed solar position. A positive correlation would mean that as one variable increases, the other tends to increase as well. A negative correlation would indicate an inverse relationship.

A fog correlation formula could be:

$$Fog \ correlation = \frac{\text{Covariance of Intensity and Solar Position}}{\text{Standard Deviation of Intensity} \times \text{Standard Deviation of Solar Position}}$$
(6)

These results suggest that as fog density increases, observed intensity tends to decrease while observed solar position is not as affected, remaining within a similar range. The correlation between intensity and solar position could indicate the relationship between these variables under different fog densities.

The correlation between two quantitative variables like Observed Intensity and Solar Position can be calculated using the Pearson correlation formula. The formula is as follows:

$$Correlation = \frac{\text{Covariance of Observed Intensity and Sol ar Position}}{\text{Standard Deviation of Observed Intensity} \times \text{Standard Deviation of Solar Position}}$$
(7)

First, we need to calculate the covariance between Observed Intensity and Solar Position.

Covariance measures how two variables vary together:

$$Covariance = n \sum (Xi - X^{-})(Yi - Y^{-})/n$$
(8)

Where:

Xi and Yi are individual values of Observed Intensity and Solar Position.

X and Y are the means of Observed Intensity and Solar Position, respectively.

n is the total number of data points. Once the covariance is obtained, the correlation is calculated by dividing the covariance by the product of the standard deviations of both variables. To compute the correlation between Observed Intensity and Solar Position for all provided fog densities, I'll perform the calculations using the given mean and standard deviation data:

Fog Density D=0.1:

Mean Observed Intensity: 42.54 Mean Solar Position: 122.54

Standard Deviation of Observed Intensity: 56.57

Standard Deviation of Solar Position: 56.57

Calculating Covariance: Covariance = $n\sum(Xi-42.54)(Yi-122.54)$ Calculating Correlation: Correlation = Covariance / (56.57 * 56.57)

Fog Density D=0.5:

Mean Observed Intensity: 8.93 Mean Solar Position: 122.54

Standard Deviation of Observed Intensity: 35.36

Standard Deviation of Solar Position: 56.57

Calculating Covariance: Covariance = $n\Sigma(Xi-8.93)(Yi-122.54)$ Calculating Correlation: Correlation = Covariance/(35.36 * 56.57)

Fog Density D=0.7:

Mean Observed Intensity: 5.63 Mean Solar Position: 122.54

Standard Deviation of Observed Intensity: 21.21 Standard Deviation of Solar Position: 56.57

Calculating Covariance: Covariance = $n\sum(Xi-5.63)(Yi-122.54)$ Calculating Correlation: Correlation = Covariance / (21.21 * 56.57)

Table 14 shows the results of covariance and correlation between Observed Intensity and Solar Position for each of the fog densities (D=0.1, D=0.5, and D=0.7).

Table 14. Summary Table of Covariance and Correlation for the Three Fog Densities (Author's own work)

Fog Density	Covariance	Correlation
D=0.1 (light)	1669.073	0.488
D=0.5 (moderate)	636.720	0.311
D=0.7 (dense)	376.337	0.261

Covariance—Covariance is a measure indicating how two variables change together. Positive values indicate a direct relationship between the variables, while negative values indicate an inverse relationship.

- For D=0.1 (light): The covariance is 1669.073, suggesting a positive relationship between Observed Intensity and Solar Position under light fog conditions.
- For D=0.5 (moderate): The covariance is 636.720, also showing a positive yet weaker relationship between these variables in moderate fog conditions.
- For D=0.7 (dense): The covariance is 376.337, confirming a positive, though weaker, relationship between Observed Intensity and Solar Position under dense fog conditions.

Correlation—Correlation measures the strength and direction of the relationship between two variables, normalized between -1 and 1. Values close to 1 indicate a strong positive correlation, values close to -1 indicate a strong negative correlation, and values close to 0 indicate a weak correlation.

- For D=0.1 (light): The correlation is 0.488, showing a moderate and positive correlation between Observed Intensity and Solar Position in light fog.
- For D=0.5 (moderate): The correlation is 0.311, indicating a weak and positive correlation between these variables in moderate fog conditions.
- For D=0.7 (dense): The correlation is 0.261, demonstrating a weak and positive correlation between Observed Intensity and Solar Position under dense fog conditions.

DISCUSSION

Understanding Solar Position Detection: Implications of Fog Density

The quest to accurately determine the sun's apparent position using tools like the Sunstone or Sun Compass involves not only practical experiments but also mathematical modeling. This analysis delves into the effects of fog density on solar position detection and its potential repercussions across various domains.

The experimentation involved simulated scenarios representing different fog densities (light, moderate, and dense) using constant incident solar intensity values. The statistical analysis of the data provided significant insights into how fog impacts solar position detection (Hall, 2017).

Impact of Fog Density on Observed Intensity and Solar Position

The intensity observed through the Sunstone decreased significantly with increasing fog density. In light fog (D=0.1), the observed intensity averaged at 42.54 W/m^2 , while in moderate (D=0.5) and dense fog (D=0.7), this dropped drastically to 8.93 W/m^2 and 5.63 W/m^2 , respectively. This decline suggests that higher fog densities result in substantially reduced solar intensity measurements, directly affecting solar position determination.

Surprisingly, the observed solar position, in terms of both mean and standard deviation, remained constant across all fog densities at 122.54 degrees. This constancy implies that fog density does not influence the apparent solar position as much as it affects intensity measurements.

Correlation Analysis between Observed Intensity and Solar Position

Correlation calculations revealed intriguing insights. In light fog, there was a moderate positive correlation (0.488) between observed intensity and solar position. However, as fog density increased, the correlation weakened: 0.311 for moderate fog and 0.261 for dense fog. This change suggests that fog influences the relationship between observed intensity and solar position, altering their correlation from moderately positive to weakly positive as fog thickens.

Implications and Significance

The findings highlight the critical impact of fog density on solar intensity measurements. As fog thickens, the ability to precisely detect solar positions diminishes due to reduced observed intensity. However, the consistency in observed solar positions, regardless of fog density, might suggest that navigational reliability concerning solar positioning remains relatively stable despite varying fog densities.

The implications of these findings extend beyond navigation. In various sectors such as urban planning, transportation safety, and solar energy systems, understanding the effect of fog density on solar position detection becomes crucial. For instance, in transportation, reduced visibility due to fog can significantly impact navigation systems relying on solar positioning tools (Holm, 2017).

Limitations and Future Directions

However, the study is not without limitations. It simulated fog densities without accounting for other atmospheric variables that might interact with fog, potentially altering the observed trends. Future research could explore these interactions to provide a more comprehensive understanding (Raffield, 2017).

In conclusion, the analysis underscores the significant influence of fog density on solar intensity measurements and its implications for solar position detection. The findings emphasize the importance of considering fog-related variables in systems reliant on solar position detection, particularly in scenarios where visibility and solar intensity measurements are crucial.

Understanding these nuances contributes to improved navigation systems and optimized solar energy utilization in fog-prone areas, affirming the necessity of accounting for atmospheric conditions in solar-based methodologies.

This discussion integrates the data and findings, emphasizing the influence of fog density on solar intensity

and its implications across various sectors, providing a comprehensive view of its impact on solar position detection.

Suggestions to Reduce Experimental Errors

To enhance experimental accuracy, the following strategies could be considered:

Monitoring Additional Atmospheric Variables: In addition to fog density, relevant atmospheric variables such as humidity, barometric pressure, and temperature should be measured and recorded. This would help discern how these variables might influence solar intensity measurements.

Continuous Calibration and Validation: Implementing an ongoing process of calibration and validation of instruments used for measuring solar intensity and solar positions. This would ensure that the collected data is accurate and reliable throughout the study.

Multiple Experimental Repetitions: Conducting multiple repetitions of each experiment under the same atmospheric conditions to verify result consistency. This would allow identification and mitigation of potential random errors.

Robust Statistical Analysis: Employing advanced statistical techniques to analyze collected data and assess the robustness of conclusions against potential sources of error. This would aid in more accurately interpreting the effects of fog on solar position measurements.

Implementing these strategies could not only reduce experimental errors but also strengthen the validity and reliability of the findings, thus providing a clearer understanding of how fog affects solar position detection.

CONCLUSION

The conducted research on accurately detecting the solar position under various fog densities has unveiled valuable insights with significant implications.

Fog Effects on Solar Intensity and Observed Position

It has been clearly demonstrated that fog density directly impacts the observed sunlight intensity. As fog becomes denser, the measured intensity considerably decreases. This finding is crucial as it indicates that reduced visibility caused by fog can significantly impact the accuracy of instruments like the Sunstone in precisely detecting the sun's position.

Surprisingly, the observed solar position doesn't seem to be as affected by fog density. The data exhibits remarkable consistency in the apparent sun position, regardless of fog density. This consistency suggests that while fog impacts the measured intensity, the observed solar position remains within a similar range, potentially vital for certain applications reliant on precise solar position detection.

Correlation Between Observed Intensity and Solar Position Under Fog

The correlation analysis has revealed intriguing patterns. While a moderate and positive correlation between observed intensity and solar position was found in light fog, this correlation weakened as fog density increased. This decline in correlation indicates that fog influences the relationship between these variables, altering their correlation from moderately positive to weakly positive as fog thickens.

Implications and Significance

The findings emphasize the importance of considering atmospheric conditions, especially fog density, when using instruments like the Sunstone for solar position determination. The reduction in observed intensity under denser fog conditions could limit the precision of these measurements, which could be critical in applications such as navigation or planning solar power systems in fog-prone areas.

Future Directions and Limitations

The study has limitations as it simulates fog densities without considering other atmospheric variables. Future research could explore these interactions to offer a more comprehensive understanding of how fog and other atmospheric conditions might affect precise solar position detection.

Final Conclusions

In summary, the results highlight the significant influence of fog density on detecting the solar position using instruments like the Sunstone. This underscores the importance of considering atmospheric factors when using these instruments and underscores the need for further research to fully understand how atmospheric conditions affect accurate solar position detection in various applications.

The conclusion of the study reinforces the experimental findings, enhancing readers' understanding. However, it lacks specific suggestions on the application of navigation tools in different fields. Here are some practical tips to enhance its reference value:

Enhance Instrument Calibration: Ensure frequent calibration of navigation tools like the Sunstone to maintain accuracy, especially in varying fog densities. This can improve reliability in navigation and other precision-dependent applications.

Integrate with Modern Technology: Explore combining ancient navigation tools with modern technologies like GPS. This hybrid approach can provide backup in low-visibility conditions and enhance overall navigation reliability.

Educational Outreach: Promote the historical significance of tools like the Sunstone through educational programs. Highlight their use in past navigation and their relevance in understanding ancient seafaring techniques.

Research and Development: Invest in further research to optimize these tools for contemporary use. Investigate materials and design enhancements that can mitigate the effects of fog and improve accuracy in adverse weather conditions.

Collaborative Studies: Foster interdisciplinary collaborations between historians, archaeologists, atmospheric scientists, and engineers. This can lead to innovative solutions and deepen our understanding of ancient navigation methods in modern contexts.

Implementing these recommendations could not only enhance the practical application of ancient navigation tools but also contribute to their preservation and broader appreciation in diverse fields.

REFERENCES

Al-Masudi, A. A. H. A. (1989). Muruj adh-Dhahab wa Ma'adin al-Jawhar [The Meadows of Gold and Mines of Gems] (P. Lunde & C. Stone, Trans.). London, UK: Kegan Paul International. (Original work published 947)

Arnold, M. (2006). How we used to navigate: A short history of navigation. Cheltenham, UK: The History Press.

Bately, J. (2013). The old english Orosius. Oxford, UK: Oxford University Press.

Crumlin-Pedersen, O. (Ed.). (1997). Viking-age ships and shipbuilding in Hedeby/Haithabu and Schleswig. Roskilde, Denmark: Viking Ship Museum.

Davidson, H. E. (1981). The lost beliefs of Northern Europe. Abingdon, UK: Routledge.

Evans, A. (2019). The Edge of the World: How the North Sea Made Us Who We Are, New York, NY: Random House.

Fadlan, I. (2012). Ibn Fadlan and the land of darkness: Arab travellers in the far north (P. Lunde & C. Stone, Trans.). London, UK: Penguin. (Original work published c. 921)

Fitzhugh, W. W. (2000). Vikings: The north Atlantic Saga. AnthroNotes, 20(1). Retrieved from https://repository.si.edu/bitstream/handle/10088/22476/anthronotes_2000_22_1_1.pdf

Gade, K. (1997). The Norse discovery of America. Worcester, MA: The Antiquarian Society.

Glessner, J. J. G. (2019). The Sunstone: Labradorescence and polarization of light. JON-Journal of Optics and Nature, 2(3), 131-142.

Hafsteinsson, S. (2002). Norsemen in Iceland: Viking navigation and settlement. Reykjavík, Iceland: University of Iceland Press.

Hagen, R. (2019). Vikings at Sea: Inventions and Innovations in Shipbuilding and Navigation. Jefferson, NC: McFarland & Company.

Hall, R. A. (2017). The Viking Dig: How an Archaeological Expedition Brought the Past to Life. London, UK: Puffin Books.

Thingvellir, Brattahlid, & Meadows, L. A. (2016). Los nórdicos en el Atlántico Norte, 835-1000. In Los hombres del norte (pp. 291-338). New York, NY: Ariel

Hecht, E. (2015). Optics (5th ed.). London, UK: Pearson.

Holm, P. (2017). Viking World: Ancient Norse Civilizations. Abingdon, UK: Viking World Press.

Jones, G. R. (1986). Navigation in the Viking Age. Oxford, UK: Archaeopress.

Knuth, E. (1997). The Natural Navigator: The Rediscovered Art of Letting Nature be Your Guide. Woodstock, VT: The Countryman Press.

Lindqvist, T. (2014). Terra Incognita: Travels in Antarctica. Edinburgh, UK: Birlinn.

Lippiatt, G. (2019). Polarized Light in Nature. Berlin, German: Springer.

Liritzis, I., Panagiota Preka-Papadema, Panagiotis Antonopoulos, Konstantinos Kalachanis v Chris G.Tzanis (2017). Does astronomical and geographical information of Plutarch's De Facie describe a trip beyond the north Atlantic ocean?. Journal of Coastal Research, 34(3), 651-674. https://doi.org/10.2112/JCOASTRES-D17-00105.1

Ma, H. (1433). Yingya Shenglan (The Overall Survey of the Ocean's Shores). In Ma Huan (Author) & J. V. G. Mills (Translator) (1970), Ying-yai Sheng-lan: The Overall Survey of the Ocean 's Shores [1433]. Cambridge: Cambridge University Press.

McGrail, S. (2001). Ancient Boats in North-West Europe: The Archaeology of Water Transport to AD 1500. Abingdon, UK: Routledge.

McGrail, S. (2014). Boats of the World: From the Stone Age to Medieval Times. Oxford, UK: Oxford University Press.

Price, N. S. (2014). The Viking Way: Religion and War in Late Iron Age Scandinavia. Oxford, UK: Oxbow Books.

Raffield, B. (2017). The Viking World. Abingdon, UK: Routledge.

Seaver, K. A. (1996). The Frozen Echo: Greenland and the Exploration of North America, ca. A.D. 1000-1500. City of Redwood City, CA: Stanford University Press.

Sutherland, P. (1992). The Vikings. London, UK: Penguin Books.

Thomsen, E. (2016). Vikings and Birrefringent Crystals. Scientific Reports, 6, 38332.

Zhou, Q. (1178). *Lingwai Daida (Accounts Beyond the Rivers)*. Retrieved from http://www.chinaknowledge.de/Literature/Science/lingwaidaida.html

ETHICAL DECLARATION

Conflict of interest: No declaration required. **Financing:** No reporting required. **Peer review:** Double anonymous peer review.