Systematic Review on the Use of Biodegradable Materials as a Sustainable Building Strategy: Adobe and Tapial

Authors

  • Ana María Lebrún Aspíllaga Ph.D., Professional School of Architecture, Faculty of Architecture of the Sacred Heart Women's University – UNIFÉ, La Molina Campus, Lima, Peru https://orcid.org/0000-0003-2744-4560
  • Estela Karem Samamé Zegarra Ph.D. Candidate, Professional School of Architecture and Urbanism, Faculty of Civil Engineering of the National University Santiago Antúnez de Mayolo (UNASAM), University City of Shancayán, Huaraz, Peru https://orcid.org/0000-0003-2317-5076
  • Leydy Nataly Zamora Terrones Msc, Professional School of Architecture and Urbanism, Faculty of Civil Engineering of the National University Santiago Antúnez de Mayolo (UNASAM), University City of Shancayán, Huaraz, Peru https://orcid.org/0009-0006-2982-3272
  • Anya Montserrat Pulido Cavada Ph.D. Candidate, Architecture and Design Department, Escuela Politécnica Superior, San Pablo-CEU University, CEU Universities, Montepríncipe Campus, Madrid, Spain https://orcid.org/0000-0002-1510-5580
  • Roberto Alonso González-Lezcano Ph.D., Architecture and Design Department, Escuela Politécnica Superior, San Pablo-CEU University, CEU Universities, Montepríncipe Campus, Madrid, Spain https://orcid.org/0000-0002-6185-4929

DOI:

https://doi.org/10.52152/heranca.v7i4.1075

Keywords:

Earthen Architecture, Vernacular Architecture, Sustainable Building, Sustainable Design, Sustainable Construction; Sustainable Design

Abstract

Over the last two decades, earth construction techniques have gained attention as solutions to challenges in the construction sector, driven by the need for more housing due to population growth and rising welfare, alongside the urgent need to address global warming and biodiversity loss. This has led to a deeper understanding and modernization of traditional methods, such as those used in the construction of the Arg-é Bam citadel, the world’s largest molded mud building. This article explores the advantages of using biodegradable materials as a sustainable design strategy, focusing on two ancient construction systems—Adobe and Tapia—both deeply connected to the environment and ecology. A systematic review of scientific articles published between 2016 and 2021, mainly from European and South American countries, was conducted. The analysis reveals that despite its many benefits, such as low environmental impact and resilience against extreme weather events, earthen construction remains a niche market. It offers an architecture that balances safety, sustainability, and ecology but is often perceived as exclusive to either the very wealthy or the very poor.

Downloads

Download data is not yet available.

References

Abril Revuelta, O., & Lasheras Merino, F. (2017). Construction reports earthenware, stone and mud and stone domes in the auxiliary constructions of popular architecture in the centre of Castilla y León. Informes De La Construcción, 69(546), e198.

Akom, J. B., Sadick, A.-M., Issa, M. H., Rashwan, S., & Duhoux, M. (2018). The indoor environmental quality performance of green low-income single-family housing. Journal of Green Building, 13(2), 98-120.

Aza-Medina, L. C., Palumbo, M., Lacasta, A. M., & González-Lezcano, R. A. (2023). Characterization of the thermal behavior, mechanical resistance, and reaction to fire of totora (Schoenoplectus californicus (CA Mey.) Sojak) panels and their potential use as a sustainable construction material. Journal of Building Engineering, 69, 105984.

Baca, L. F. G. (2007). Arquitectura en tierra. Hacia la recuperación de una cultura constructiva [Ground building Towards recovery constructive culture]. Journal of Cultural Heritage Studies, 20(2).

Baraya, S. (2022). Adobe: El material reciclable más sostenible [Adobe: The most sustainable and recyclable material]. Retrieved from https://www. archdaily.cl/cl/944575/adobe-el-material-reciclable-mas-sostenible

Basile, S. D. (2018). Reflexiones en el marco del patrimonio arquitectónico en tierra: Tutelar, conservar y restaurar el patrimonio modesto [Reflection within the framework of land architecture heritage: Protecting, safeguarding, and restoring humble heritage]. Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 48(1), 15-30.

Becker, M. J. (2015). Adobe and rammed earth buildings: Design and construction. Material Culture, 35(2), 79-82.

Bendixen, M., Best, J., Hackney, C., & Iversen, L. (2019). Time is running out for sand. Nature, 571, 29-31.

Blondet, M., & Aguilar, R. (2007). Seismic protection of earthen buildings. Retrieved from https://www.researchgate.net/publication/237635394

Botejara-Antúnez, M., Garrido-Píriz, P., Sánchez-Barroso, G., González-Domínguez, J., & García-Sanz-Calcedo, J. (2021). Life cycle assessment (LCA) in the construction of healthcare buildings. Analysis of environmental impact. IOP Conference Series: Earth and Environmental Science, 664(1), 012053.

Bui, Q. B., Morel, J. C., Hans, S., & Walker, P. (2014). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54, 163-169.

Bui, Q. B., Morel, J. C., Tran, V. H., Hans, S., & Oggero, M. (2016). How to use in-situ soils as building materials. Procedia Engineering, 145, 1119-1126

Canivell, G., & Pastor, G. C. (2018). ACE Evaluation of vernacular architecture built on earth in the province of Mendoza. Approaches and Results. Retrieved from http://dx.doi.org/10.5821/ace.13.37.5180

Castillo Levicoy, C., & Pérez Lira, C. (2020). Arquitectura en adobe y quincha: Construcción de una identidad en torno a los recursos naturales de la ribera del Lago General Carrera en la región de Aysén, Chile [Architecture in adobe and quincha: Building an identity around the natural resources of the shore of Lake General Carrera in the region of Aysén, Chile]. Ge-Conservación, 18(1), 56-68. Retrieved from https://doi.org/10.37558/gec.v18i1.769

Chacón, J., Suquillo, B., Sosa, D., & Celi, C. (2021). Evaluación y Reforzamiento de una Estructura Patrimonial de Adobe con Irregularidad en Planta [Evaluate and strengthen the irregular adobe heritage structure of the factory]. Revista Politécnica, 47(1), 43-56.

Charef, R., Ganjian, E., & Emmitt, S. (2021). Socio-economic and environmental barriers for a holistic asset lifecycle approach to achieve circular economy: A pattern-matching method. Technological Forecasting and Social Change, 170, 120798.

Daneels, A. (2018). La arquitectura de tierra de Mesoamérica: Un patrimonio precolombino que requiere revalorización [Land architecture in Central America: Pre Columbian heritage in need of reassessment]. Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 48(2), 143-156.

Darling, E. K., Cros, C. J., Wargocki, P., Kolarik, J., Morrison, G. C., & Corsi, R. L. (2012). Impacts of a clay plaster on indoor air quality assessed using chemical and sensory measurements. Building and Environment, 57, 370-376.

De Schiller, S., & Martin Evans, J. (2020). Construcción con Tierra Nº9. Retrieved from http://publicacionescientificas.fadu.uba.ar/index.php/construccioncontierra/index

Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z., . . . Shirayama, Y. (2018). Assessing nature's contributions to people. Science, 359(6373), 270-272.

Dodman, D., Hayward, B., Pelling, M., Castan Broto, V., Chow, W., Chu, E., . . . Ziervogel, G. (2022). Cities, settlements and key Infrastructure. In Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC World Meteorological Organization. Retrieved from https://www.ipcc.ch/report/ar6/wg2/chapter/chapter-6/

Duarte Carlos, G., Alcindor, M., & Correia, M. (2018). Arquitectura tradicional de tierra en Europa: Un patrimonio de entramado y encestado, adobe, tapia y pared de mano [The heritage of traditional European earthen architecture: Grids and waxing, adobe, tapestries, and handwalls]. Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 48(2), 239-256.

Enshassi, A., Kochendoerfer, B., & Rizq, E. (2014). Evaluación de los impactos medioambientales de los proyectos de construcción [Environmental impact assessment of construction projects]. Revista Ingeniería de Construcción, 29(3), 234-254.

Falcone, M., Origlia, A., Campi, M., & Di Martino, S. (2021). From architectural survey to continuous monitoring: Graph-based data management for cultural heritage conservation with digital twins. ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 47-53. Retrieved from https://doi.org/10.5194/isprs-archives-xliii-b4-2021-47-2021

Fernandes, J., Mateus, R., & Bragança, L. (2014). The potential of vernacular materials to the sustainable building design. Vernacular Heritage and Earthen Architecture: Contributions for Sustainable Development, 623-629.

Foruzanmehr, A., & Vellinga, M. (2011). Vernacular architecture: Questions of comfort and practicability. Building Research and Information, 39(3), 274-285

Gama Castro, J. E., Cruz y Cruz, T., Pi Puig, T., Alcalá Martínez, R., Cabadas Báez, H., Sánchez Pérez, S., . . . Vilanova de Allende, R. (2012). Arquitectura de tierra: El adobe como material de construcción en la época prehispánica [Adobe architecture: Adobe used as a building material in pre Spanish times.]. Boletín de la Sociedad Geológica Mexicana, 64(2), 177-188. https://doi.org/10.18268/bsgm2012v64n2a3

García, S. Q., & Vergara, G. R. (2019). El sistema de torres musulmanas en tapial de la Sierra de Segura (Jaén). Una contribución al estudio del mundo rural y el paisaje de al-Ándalus [The Muslim tower system in Tapia (Ha'en) of the Segura Mountains. Contribution to the study of the rural world and landscape in Andalusia]. Arqueología de la Arquitectura, (16), 1-32.

Goy, M. (2022). Construir con tierra: Todo lo que hay que saber de un material que se redescubre. Retrieved from https://www.ellitoral.com/area-metropolitana/construccion-tierra-barro-tecnologia-btc-ingeniero-tecnologica-utn_0_lkGlCoGayF.html

Guerrero, L. F. (2018). Earth as a sustainable material for conservation. Estoa. Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca, 7(13), 78-96.

Halilovic, M. (2020). Vernacular architecture sustainability principles: A case study of Bosnian stone houses in Idbar village. Periodicals of Engineering and Natural Sciences, 8(4), 2564-2574.

Hamard, E., Cazacliu, B., Razakamanantsoa, A., & Morel, J. C. (2016). Cob, a vernacular earth construction process in the context of modern sustainable building. Building and Environment, 106, 103-119.

Hubka, T. (2012). Just folks designing: Vernacular designers and the generation of form. Journal of Architectural Education, 32(3), 27-29.

Huovila, P., Ala-Juusela, M., Melchert, L., Pouffary, S., Cheng, C. C., Ürge-Vorsatz, D., . . . Graham, P. (2009). Buildings and climate change: Summary for decision-makers. Sustainable Buildings and Climate Initiative (UNEP SBCI). Retrieved from https://research.monash.edu/files/279205340/279205309.pdf

Javier Castilla Pascual, F., & Núñez Martí, P. (2005). Estudio para la recuperación de la técnica del tapial en la construcción tradicional de la provincia de Albacete [Research on the recycling technology of tapestries in traditional buildings of Albacete Province]. Actas del Cuarto Congreso Nacional de Historia de la Construcción. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=2151363

Jiang, L., & O’Neill, B. C. (2017). Global urbanization projections for the shared socioeconomic pathways. Global Environmental Change, 42, 193-199.

Joffroy, T., Le Tiec, J. M., Rakotomamonjy, B., & Misse, A. (2018). El patrimonio arquitectónico de tapial de la región de Auvernia-Ródano-Alpes: Desde su (re) descubrimiento hasta la arquitectura contemporánea [Architectural heritage of Tapiael in the Auvergne Rh ô ne Alpes region: from (rediscovery) to contemporary architecture]. Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 48(2), 223-238.

Katerine Molina Contreras, D., & Eduardo Becerra Becerra, J. (2020). La tierra como material de construcción, propiedades y estabilizantes. Retrieved from https://repository.usta.edu.co/handle/11634/30482

Kitchenham, B. A., Hughes, R. T., & Linkman, S. G. (2001). Modeling software measurement data. IEEE Transactions on Software Engineering, 27(9), 788-804.

Larraz, C. (2015). La recuperación de la tierra pisada en la arquitectura contemporánea. Retrieved from https://zaguan.unizar.es/record/47607

Lawrence, R. J. (2006). Learning from the vernacular: Basic principles for sustaining human habitats. In Vernacular Architecture in the 21st Century (pp. 110-127). Oxford, UK: Taylor & Francis.

Levicoy, C. N. C. (s/f). Ge-conservation Architecture in adobe and quincha: Building an identity around the natural resources of the shores of Lake General Carrera in the Aysén region.

Loo, L. D., Leila, A.,& Mahdavinejad, M. (2017). The concept of sustainability in contemporary architecture and its significant relationship with vernacular architecture of Iran. Journal of Sustainable Development, 10(1), 132-141.

Machado, M. V., La Roche, P. M., Mustieles, F., & De Oteiza, I. (2000). The fourth house: The design of a bioclimatic house in Venezuela. Building Research & Information, 28(3), 196-211.

Masson-Delmotte, V., Zhai, P., Pörtner, O., Roberts, D., Skea, J., Shukla, P., . . . Waterfield, T. (2018). Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Retrieved from https://www.ipcc.ch/sr15/download/

McGregor, F., Heath, A., Maskell, D., Fabbri, A., & Morel, J. C. (2016). A review on the buffering capacity of earth building materials. Proceedings of the Institution of Civil Engineers-Construction Materials, 169(5), 241-251.

Mileto, C., Vegas, F., Soriano, L. G., & Cristini, V. (Eds.). (2014). Vernacular architecture: Towards a sustainable future. Boca Raton, FL: CRC Press.

Mirzabaev, A., Stringer, L. C., Benjaminsen, T. A., Gonzalez, P., Harris, R., Jafari, M., . . . Zakieldeen, S. (2022). Deserts, semiarid areas and desertification. In Climate Change 2022: Impacts, Adaptation and Vulnerability. World Meteorological Organization. Retrieved from https://www.ipcc.ch/report/ar6/wg2/chapter/ccp3/

Morel, J. C., & Charef, R. (2019). What are the barriers affecting the use of earth as a modern construction material in the context of circular economy?. IOP Conference Series: Earth and Environmental Science, 225, 012053.

Morel, J. C., Charef, R., Hamard, E., Fabbri, A., Beckett, C., & Bui, Q. B. (2021). Earth as construction material in the circular economy context: Practitioner perspectives on barriers to overcome. Philosophical Transactions of the Royal Society B, 376(1834), 20200182.

Morel, J. C., Mesbah, A., Oggero, M., & Walker, P. (2001). Building houses with local materials: Means to drastically reduce the environmental impact of construction. Building and Environment, 36(10), 1119-1126.

Moscoso-Cordero, M. S. (2016). El adobe, sus características y el confort térmico. Retrieved from https://www.eumed.net/libros-gratis/actas/2016/filosofia/El-adobe-Moscoso.pdf

Niranjan, A. (2021). The world is running out of sand. Deutsche Welle (DW). Retrieved from https://www.dw.com/en/ sand-crisis-shortage-supply-mafia/a-56714226

Novoselov, A. A., Hodson, M. E., Tapia-Gatica, J., Dovletyarova, E. A., Yáñez, C., & Neaman, A. (2022). The effect of rock lithology on the background concentrations of trace elements in alluvial soils: Implications for environmental regulation. Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry, 146(105440), 105440.

Oliver, P. (1997). Encyclopedia of vernacular architecture of the world. Cambridge, UK: Cambridge University Press.

Olmedo Rodríguez, A. (2020). Evaluación de estrategias arquitectónicas para la consecución del nuevo modelo energético [Tesis doctoral]. Universidad de Valladolid.

Orta, B., Adell, J., Bustamante, R., & Martínez-Cuevas, S. (2016). Earthquake-resistant self-construction system: Strength characteristics and construction process. Construction Reports. Retrieved from http://dx.doi.org/10.3989/ic.15.082

Pérez, J. (2019). Memory and civilisation Manolo’s dovecote. A case study of vernacular architecture from the paradigm of culture. Memoria Y Civilización, 22, 727-756.

Pierre-Louis, K. (2018a). El calentamiento que general el aire acondicionado [Heating, ventilation, and air conditioning]. The New York Times. Retrieved from https:// www.nytimes.com/es/2018/05/18/espanol/aire-acondicionado-calentamiento-global.html

Pierre-Louis, K. (2018b). The world wants air-conditioning. That could warm the world. The New York Times. Retrieved from https://www.nytimes.com/2018/05/15/climate/air-conditioning.html

Piqueras, T. G. (2017). Archaeologica-l drawing archaeology of earthen architecture. En graphic study in the valley of the M’Goun river valley, Morocco. DisegnareCon., 10(19). Retrieved from https://riunet.upv.es/handle/10251/107465

Quiles, M. P., Knoll, F., & Maestre, F. J. J. (2019). ¿Adobes, terrones o bolas de barro amasado? Aportaciones para el reconocimiento arqueológico de las distintas técnicas constructivas que emplean módulos de tierra [Adobe, tubers, or clay balls? The contribution of various construction techniques using ground modules to archaeological investigations]. Arqueología, 25(2), 213-234.

Rashid, M., & Ara, D. R. (2015). Modernity in tradition: Reflections on building design and technology in the Asian vernacular. Frontiers of Architectural Research, 4(1), 46-55.

Ratto, N., Bonomo, N., & Osella, A. (2019). Arquitectura de la aldea de Palo Blanco (ca. 0–1000 dC), departamento de Tinogasta, Catamarca, Argentina [The architecture of Palo Blanco village (approximately 0-1000 AD) in Tinogasta province, Catamarca, Argentina]. Latin American Antiquity, 30(4), 760-779.

Ríos Cabrera, S. (2018). Construcción con tierra en climas lluviosos: Desarrollos del período colonial e independiente en las cuencas de los ríos Paraguay, Paraná y Uruguay [Land construction in rainy climates: Development during the colonial and independence periods in Paraguay, Paran á, and Uruguay River basins]. Anales del Instituto de Arte Americano e Investigaciones Estéticas. Mario J. Buschiazzo, 48(1), 95-108.

Rivera-Salcedo, H., Valderrama-Gutiérrez, O. M., Daza-Barrera, Á. A., & Plazas-Jaimes, G. S. (2021). Adobe como saber ancestral usado en construcciones autóctonas de Pore y Nunchía, Casanare (Colombia) [Adobe as ancestral knowledge used in indigenous constructions of Pore and Nunchía, Casanare (Colombia)]. Revista de Arquitectura (Bogotá), 23(1), 74-85.

Rodríguez-Mariscal, J. D., & Solís, M. (2020). Towards a methodology for the experimental characterisation of the compressive behaviour of adobe masonry. Informes De La Construcción, 72(557), e332.

Rubio Valverde, M. (2021). The wall in the city of Cordoba during medieval and modern times. A first typological proposal. Arqueología De La Arquitectura, (18), e117.

Salman, M. (2019). Sustainability and vernacular architecture: Rethinking what identity is. In K. Hmood (Ed.), Urban and Architectural Heritage Conservation within Sustainability. London, UK: IntechOpen.

Seguí, P. (n.d.). La tierra que busca su protagonismo en la arquitectura. Ovacen. Retrieved from https://ovacen.com/ la-tierra-que-busca-su-protagonismo-en-la-arquitectura/

Serrano Yuste, P. (2015). Tierra comprimida y normativa para construir edificios [Compressing land and building regulations]. Retrieved from https://www.certificadosenergeticos.com/tierra-comprimida-normativa-construir-edificios

Silva, N. J., & Gilles, C. T. (2018). Construction reports seismic reinforcement techniques for the structural recovery of Chile’s adobe architectural heritage. Informes De La Construcción, 70(550), e252.

Souza, E. (2021). Materiales a 0 km: Preservando el medio ambiente y las culturas locales. Retrieved from https://www.archdaily.cl/cl/958897/materiales-a-0-km-preservando-el-medio-ambiente-y-las-culturas-locales

Zhai, Z. J., & Previtali, J. M. (2010). Ancient vernacular architecture: characteristics categorization and energy performance evaluation. Energy and Buildings, 42(3), 357-365.

Downloads

Published

2024-12-30

How to Cite

Aspíllaga, A. M. L., Zegarra, E. K. S., Terrones, L. N. Z., Cavada, A. M. P., & González-Lezcano, R. A. (2024). Systematic Review on the Use of Biodegradable Materials as a Sustainable Building Strategy: Adobe and Tapial. Herança, 7(4), 114–131. https://doi.org/10.52152/heranca.v7i4.1075

Issue

Section

Articles (Regular Review EUR450)